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Preface

▶ Looking back, there are certain ideas that permeate my research
over the past decades.

▶ Briefly put, my research has revolved around the ideas of
▶ describing and analyzing audio signals using parametric and

statistical models.
▶ posing, analyzing, and solving problems in speech and audio using

optimization, linear algebra, and statistics.
▶ In this presentation, I would like to talk more about the

model-based approach and what can be achieved with it.
▶ I will do this primarily in the context of a specific model and our

contributions.
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Model-based Approach

Research questions: What are good models of speech and
audio signals recorded in adverse conditions, how do we find
their parameters, and how can we use them?

3 / 31



M. G. Christensen | Model-based Analysis and Processing of Speech and Audio Signals

Model-based Approach

▶ Processing based on generative signal models described in
terms of physically meaningful parameters.

▶ Speech and audio models have been around for many years (we
tried it in the 70s and it didn’t work).

▶ Skeptics argue that the models are (always) wrong and that it is
not possible to estimate the parameters anyway.

▶ However, models can be used for many things and in different
ways.

▶ The approach leads to robust, tractable and often fast methods
that can be improved and analyzed.
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Model-based Approach

Partial models, imperfect as they may be, are the only means
developed by science for understanding the universe.

Rosenblueth & Wiener, 1945.
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Model-based Approach

What is a good model?
▶ Fits the data well
▶ Physically meaningful
▶ As simple as possible!

We will now explore with an example how we can
▶ model speech and audio signals
▶ estimate parameters
▶ use and improve the model
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Harmonic Model
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Figure: Spectrogram of speech utterance "why were you away a year, Roy?".
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Harmonic Model

Many speech and audio signals are periodic or approximately so.
Such signals can be modeled by the harmonic model given by (for
n = 0, ... , N − 1)

x(n) =s(n) + e(n) (1)

=
L∑

l=1

alejω0 ln + e(n). (2)

Definitions:
s(n) is the deterministic component
e(n) is the stochastic/noise component
ω0 is the fundamental frequency
al = Alejϕl is the complex amplitude of the l th harmonic
θ = [ ω0 A1 ϕ1 · · ·AL ϕL ]T is the parameter vector
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Harmonic Model

The model can be written in matrix-vector notation as

x(n) = s(n) + e(n) (3)
= Z(n)a + e(n) (4)
= ZD(n)a + e(n) (5)

with the following definitions:
x(n) = [ x(n) · · · x(n + M − 1) ]T

z(n,ω) = [ ejωn ejω(n+1) · · · ejω(n+M−1) ]T

Z(n) = [ z(n,ω0) · · · z(n,ω0L) ], Z = Z(0)
D(n) = diag(

[
ejω0n ejω02n ... ejω0Ln

]
)

a = [ a1 · · · aL ]T
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Harmonic Model

The covariance matrix of x(n) denoted R = E
{

x(n)xH(n)
}

, can be
Written in terms of the model, i.e.,

R = ZPZH + Q, (6)

where P ≈ diag
([

A2
1 · · · A2

L

])
and Q = E

{
e(n)eH(n)

}
. Often it is

assumed that Q = σ2I.

Let the output signal y(n) of a filter having coefficients h ∈ CM be
defined as

y(n) =hHx(n) (7)

=hHZD(n)a + hHe. (8)

The output power hHRh is then

E
{
|y(n)|2

}
= hHZPZHh + hHQh. (9)
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Harmonic Model

Let the EVD of R be
R = UΛUH , (10)

where U contains the M eigenvectors uk of R, i.e., and Λ is a diagonal
matrix containing the corresponding (sorted) eigenvalues, λk .

Let S and G be formed as

S =
[

u1 · · · uL
]

and G =
[

uL+1 · · · uM
]

. (11)

Assuming Q = σ2I and observing that U
(
Λ− σ2I

)
UH = ZPZH it

follows that
ZHG = 0 and R (S) = R (Z) . (12)
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Harmonic Model

Is it possible to
▶ estimate the nonlinear parameters?
▶ take non-stationarity into account?
▶ deal with interference and noise?
▶ extend the model to arrays?

Let us find out...
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Fundamental Frequency Estimation

The variance of an unbiased estimate θ̂i of θi (i.e., the i th element of
θ ∈ RP) is bounded by the Cramér-Rao lower bound (CRLB):

var(θ̂i) ≥
[
I−1(θ)

]
ii , (13)

where the Fisher Information Matrix (FIM) I(θ) is given by

[I(θ)]il = −E
{
∂2 lnp(x;θ)

∂θi∂θl

}
, (14)

with lnp(x;θ) being the log-likelihood function for x ∈ CN . The
asymptotic CRLB for ω0 (for WGN) is

var(ω̂0) ≥
6σ2

N3
∑L

l=1 A2
l l2

. (15)
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Fundamental Frequency Estimation
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Figure: CRLB as a function of ω0 for different cases.
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Fundamental Frequency Estimation

For white Gaussian noise (Q = σ2I) with M = N the log-likelihood
function is

lnp(x;θ) = −N lnπ − N lnσ2 − 1
σ2 ∥x − Za∥2

2. (16)

The maximum likelihood estimator is given by (Quinn 1991)

ω̂0 = argmax
ω0

lnp(x;θ) = argmax
ω0

xHZ
(
ZHZ

)−1
ZHx (17)

≈ argmax
ω0

L∑
l=1

∣∣∣∣∣
N−1∑
n=0

x(n)e−jω0 ln

∣∣∣∣∣
2

. (18)

This can be computed using an FFT, i.e., using harmonic summation
(Noll 1969) but (17) can also be implemented fast (Nielsen 2017)!
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Fundamental Frequency Estimation

The principal angles {ξk} between the two subspaces with projection
matrices ΠZ and ΠG, are defined for k = 1, ... , K as (with
K = min{2L, M − 2L})

cos (ξk ) = max
y

max
z

yHΠZΠGz
∥y∥2∥z∥2

≜ yH
k ΠZΠGzk = κk , (19)

with yHyi = 0 and zHzi = 0 for i = 1, ... , k − 1. The κk s are related to
the Frobenius norm as ∥ΠZΠG∥2

F =
∑K

k=1 κ
2
k . Thus, we can estimate

ω0 and L as (Christensen 2009)

(ω̂0, L) = argmin
ω0,L

1
MK

Tr
{

Z
(
ZHZ

)−1
ZHGGH

}
(20)

≈ argmin
ω0,L

1
MK

∥ZHG∥2
F . (21)
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Fundamental Frequency Estimation

Recall that the filtered signal is y(n) = hHZD(n)a + hHe and that

E
{
|y(n)|2

}
= hHZPZHh + hHQh. (22)

Idea: design a filter as

min
h

hHRh s.t. hHZ = 1T . (23)

This has the solution

h⋆ = R−1Z
(
ZHR−1Z

)−1
1. (24)

We can use this filter to estimate the fundamental frequency as
(Christensen 2008)

ω̂0 = argmax
ω0

hHRh (25)

= argmax
ω0

1T (ZHR−1Z
)−1

1. (26)
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Pre-Whitening

Many estimators assume that Q = σ2I. How do we deal with colored
noise? Suppose that e(n) ∼ N (0, Q). We can transform x(n) as

AHx(n) = AHs(n) + AHe(n). (27)

Let A be the Cholesky factor of Q−1, then AHQA = I and the noise is
now distributed as AHe(n) ∼ N (0, I). This can be implemented as a
filter and is called pre-whitening.

The matrix Q can be estimated in a number of ways:
▶ Noise trackers (Gerkmann 2012)
▶ Parametric NMF (Srinivasan 2007, Jensen 2018)
▶ Harmonic model (Nørholm 2016, Quinn 2021)
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Separation & Noise Reduction

How do we deal with interference and noise? Introducing sources
xk (n) indexed by k , we obtain (Christensen 2008)

x(n) =
K∑

k=1

xk (n) =
K∑

k=1

(
Lk∑

l=1

ak ,lejωk ln + ek (n)

)
(28)

=
L∑

l=1

alejω0 ln

︸ ︷︷ ︸
target

+ e(n)︸︷︷︸
interference+noise

. (29)

e(n) is no longer Gaussian! The filtered signal x(n) is

hHx(n) = hHZD(n)a + hHe. (30)

If hHZ = 1T then hHZD(n)a = 1T D(n)a =
∑

l=1 alejω0 ln.
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Separation & Noise Reduction

The output power can be written as E
{
|y(n)|2

}
= hHZPZHh + hHQh.

Optimal filters can be derived by as:

min
h

hHQh s.t. hHZ = 1. (31)

The solution to this problem is:

h⋆ = Q−1Z
(
ZHQ−1Z

)−1
1. (32)

These filters attenuate noise and interference optimally!

Simplifications (Christensen 2010):

1. Q = R → h⋆ = R−1Z
(
ZHR−1Z

)−1 1.

2. Q = σ2I → h⋆ = Z
(
ZHZ

)−1 1.

3. limM→∞ MZ
(
ZHZ

)−1
= Z → h⋆ = 1

M Z1.
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Non-Stationarity

Can we deal with a time-varying fundamental frequency? A more
general signal model is the following:

x(n) =
L∑

l=1

Alejθl (n) + e(n), (33)

where θl(t) =
∫ t

0 lω0(τ)dτ + ϕl is the instantaneous phase and ω0(t)
is the fundamental frequency. If ω0(t) ≈ ω0 + α0t , we get

θl(t) =
1
2
α0lt2 + ω0lt + ϕl , (34)

where α0 is the fundamental chirp rate. The resulting model is called
the harmonic chirp model (HCM)! α0 and ω0 can be estimated with
NLS (Christensen 2014, Nørholm 2016).

Optimal filters can be designed for the HCM too (Nørholm 2016)!
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Non-Stationarity
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Figure: Spectrum of harmonic model and harmonic chirp model.
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Array Processing

Suppose we have a uniform linear array and sources in the farfield:

φ

d sinφ

d

1 2 3 K· · ·

Source

The delay between microphone 1 and k is then related to the angle φ
as ∆k = d sinφ

c fs(k − 1) where fs is the sampling frequency.
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Array Processing

Then we have that sk (n) = s(n −∆k ) and xk (n) = sk (n) + ek (n)
where k denotes the channel, and the signal for the k th channel is

xk (n) = ZD(n −∆k )a + ek (n), (35)

with ek being its noise. The signal at microphone k is then
sk (n) = s(n −∆k ) and thus (Jensen 2014)

sk (n) =ZD
(

n − d sinφ

c
fs(k − 1)

)
a. (36)

As we can see, it is easy to account for fractional delays and other
geometries can easily be incorporated too.
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Array Processing

The observed signal can be organized in a matrix X(n) ∈ CK×M as

X(n) =

x1(n) · · · x1(n − M + 1)
...

. . .
...

xK (n) · · · xK (n − M + 1)

 . (37)

Defining ik as the k th column of IK , the observed signal can be
written as

XT (n)ik = ZD(n −∆k )a + ek (n). (38)

Define the spatial frequency ωs = ω0fs d sinφ
c and the vectors

zt(ω0l) =
[
1 e−jω0 l · · · e−jω0 l(M−1)

]T
(39)

zs(ωsl) =
[
1 e−jωs l · · · e−jωs l(P−1)

]T
. (40)
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Array Processing

By introducing γl(n) = alejω0 ln, the matrix X(n) can be modeled as

X(n) =
L∑

l=1

γl(n)zs(ωsl)zT
t (ω0l) + E(n), (41)

where E(n) ∈ CK×M is defined similarly to X(n). Defining
x̄(n) = vec{X(n)} where vec{·} is the vectorization operator, the
model can be written as

x̄(n) =
L∑

l=1

γl(n)z̄l + w̄(n), (42)

where z̄l is the vectorized version of the spatio-temporal model, i.e.,

z̄l =vec{zs(ωsl)zT
t (ω0l)} (43)

=zs(ωsl)⊗ zt(ω0l). (44)
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Array Processing

Defining the matrix Z̄ =
[
z̄1 · · · z̄L

]
we can impose the constraint

h̄H Z̄ = 1T , leading to the filter design problem:

min
h̄

h̄HR̄h̄ s.t. Z̄H(n)h̄ = 1, (45)

where R̄ is the covariance matrix of x̄(n). The solution to the above
optimization problem is given by:

h̄⋆ = R̄−1Z̄
(
ZHR̄−1Z̄

)−1
1. (46)

This yields the following estimator of ω0 and φ (Jensen 2015):

{ω̂0, φ̂} = argmax
ω0,φ

1T (ZHR̄−1Z̄
)T

1. (47)

The filter can also be used for separation and noise reduction!
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Contributions

Key contributions of thesis:
▶ Methods for order estimation (Paper A)
▶ Optimal filters for periodic signals (Paper B, E)
▶ Fundamental frequency estimators (Paper C)
▶ Models, estimators, and filters for non-stationary signals (Paper

D, E)
▶ Sparse linear prediction (Paper F)
▶ Model-based array processing (Paper G)
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Contributions

Related contributions:
▶ The NLS fundamental frequency estimator can be implemented

fast (Nielsen 2017) and in a Bayesian framework (Shi 2019)
▶ Subspace and optimal filtering methods can be unified (Jensen

2016)
▶ Model-based enhancement can improve speech intelligibility in

babble noise (Kavelekalam 2019)
▶ Signal models can be used to detect string, fret, picking position,

etc. (Hjerrild 2017)
▶ Parametric NMF can estimate statistics for pre-whitening

(Nielsen 2018, Esquivel 2019)
▶ The model selection problem can be solved in a number of ways

(Nielsen 2014)
▶ Real-time and stable sparse linear prediction possible (Jensen

2013, Giacobello 2014)
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Contributions

What can this all be used for?
▶ Hearing aids
▶ Voice analysis
▶ Telecommunication
▶ Reproduction systems
▶ Fault detection
▶ Music equipment

And many other things...
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Conclusions

▶ As we have seen, there are a number of advantages to the
model-based approach.

▶ Critical assumptions can easily be identified and can be
mitigated, if necessary.

▶ The harmonic model can be used for (approximately) periodic
signals, such as speech and audio.

▶ It is possible to estimate its parameters in adverse conditions
and computationally efficient implementations exist.

▶ It is possible to deal with noise, interference, and non-stationarity
and to extend the principles to arrays.

▶ There are many more problems that could probably benefit from
this approach!

▶ These include applications with multiple channels, adverse
conditions, and when the fine details and the physics matter.
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